Supplementary Material

A Data Preprocessing

In the preprocessing phase, songs in the MIDI collection are first filtered according to
specific conditions, keeping only the ones that:

* Maintain a time signature of 4/4 throughout their entirety.
* Contain at least one non-empty drums track (MIDI channel 10).

» Contain at least one non-empty bass track (MIDI program number in the range
[32, 39]).

* Contain at least one non-empty guitar/piano track (MIDI program number in the
range [0, 31]).

After the filtering phase, each song is preprocessed in order to obtain sequences
with a fixed number of bars and tracks. Since a song may contain several drum, bass
and guitar/piano tracks, multiple subsongs are derived from it by computing a cross-
product between the three classes of tracks. The rest of the tracks are merged into a
single “strings” track which is appended to each combination resulting from the cross-
product. At the end of this process, each subsong is composed of 4 tracks: a drum
track, a bass track, a guitar/piano track and a strings track. Each MIDI subsong com-
bination is then transformed into a pianoroll. In order to obtain fixed size sequences of
music, denoting with N the number of bars, a sliding window of size IV and stride 1
is slid along the bar axis of the subsong’s pianoroll to extract the final samples. Data
augmentation is performed on each subsequence by randomly transposing the pitch of
all notes by a number of semitones uniformly sampled from the interval [-5, 6]. The
resulting sequence of N bars is added to the final dataset only if it does not contain
any bar of complete silence. Each sample is finally stored as a pair of tensors (S, X),
where S and X are, respectively, the structure tensor and the content tensor associated
to the musical sequence.

B Model

B.1 Convolutional Graph Network

In our model, the content encoder and the content decoder both use a Graph Con-
volutional Network (GCN) to propagate musical information. The GCN exploits the

structure S of a chord-level graph g. The /-th layer of the GCN aggregates the in-
formation contained in the neighborhood of each node v, computing new node states
hitl € R? as follows:

1
hit' =ReLU [>~ >~ Wwf“e(hf;,aw) + W | +hf, ()
teT ueN}

where 7 = {1,2,...,0} is the set of edge types, /! is the neighborhood of v restricted
to edges (u, v) of type Ty, = t, 64, € RT is the one-hot distance in timesteps between
u and v, Wf“ € R4%d agnd Wit ¢ R4%4 gre learnable weight matrices and e: R x
RT — R4 is a learnable function defined as:

e (h%,8.,) =ReLU (D(8,,) ®hY), 2)

where D € R*T is a learnable distance embedding matrix that transforms one-hot
timestep distances d,,. The weight matrix D is shared across all the convolutional
layers, forcing the network to find a single general representation for distances.

Looking at the first term in Equation 1, v’s state h’ is first transformed through the
weight matrix W1, Then, node states h!, coming from the neighborhood of v are
transformed through the function e on the basis of the timestep distance d,,, between
u and v. Finally, if 7,,, = ¢, the modified node states are further transformed through
the weight matrix W' and scaled by 1/|N|. The resulting values are summed and
passed through a ReLU activation function. The final node state h’! is obtained by
summing this last value with the previous node state h’. This represents a residual
connection between consecutive layers in the GCN.

	Data Preprocessing
	Model
	Convolutional Graph Network

