
Supplementary Material

A Data Preprocessing
In the preprocessing phase, songs in the MIDI collection are first filtered according to
specific conditions, keeping only the ones that:

• Maintain a time signature of 4/4 throughout their entirety.

• Contain at least one non-empty drums track (MIDI channel 10).

• Contain at least one non-empty bass track (MIDI program number in the range
[32, 39]).

• Contain at least one non-empty guitar/piano track (MIDI program number in the
range [0, 31]).

After the filtering phase, each song is preprocessed in order to obtain sequences
with a fixed number of bars and tracks. Since a song may contain several drum, bass
and guitar/piano tracks, multiple subsongs are derived from it by computing a cross-
product between the three classes of tracks. The rest of the tracks are merged into a
single “strings” track which is appended to each combination resulting from the cross-
product. At the end of this process, each subsong is composed of 4 tracks: a drum
track, a bass track, a guitar/piano track and a strings track. Each MIDI subsong com-
bination is then transformed into a pianoroll. In order to obtain fixed size sequences of
music, denoting with N the number of bars, a sliding window of size N and stride 1
is slid along the bar axis of the subsong’s pianoroll to extract the final samples. Data
augmentation is performed on each subsequence by randomly transposing the pitch of
all notes by a number of semitones uniformly sampled from the interval [-5, 6]. The
resulting sequence of N bars is added to the final dataset only if it does not contain
any bar of complete silence. Each sample is finally stored as a pair of tensors (S,X),
where S and X are, respectively, the structure tensor and the content tensor associated
to the musical sequence.

B Model

B.1 Convolutional Graph Network
In our model, the content encoder and the content decoder both use a Graph Con-
volutional Network (GCN) to propagate musical information. The GCN exploits the

1



structure S of a chord-level graph g. The ℓ-th layer of the GCN aggregates the in-
formation contained in the neighborhood of each node v, computing new node states
hℓ+1
v ∈ Rd as follows:

hℓ+1
v = ReLU

∑
t∈T

∑
u∈N t

v

1

|N t
v |
Wℓ+1

t e
(
hℓ
u, δuv

)
+Wℓ+1hℓ

v

+ hℓ
v, (1)

where T = {1, 2, . . . , θ} is the set of edge types, N t
v is the neighborhood of v restricted

to edges (u, v) of type τuv = t, δuv ∈ RT is the one-hot distance in timesteps between
u and v, Wℓ+1

t ∈ Rd×d and Wℓ+1 ∈ Rd×d are learnable weight matrices and e : Rd×
RT → Rd is a learnable function defined as:

e
(
hℓ
u, δuv

)
= ReLU

(
D(δuv)⊙ hℓ

u

)
, (2)

where D ∈ Rd×T is a learnable distance embedding matrix that transforms one-hot
timestep distances δuv . The weight matrix D is shared across all the convolutional
layers, forcing the network to find a single general representation for distances.

Looking at the first term in Equation 1, v’s state hℓ
v is first transformed through the

weight matrix Wℓ+1. Then, node states hℓ
u coming from the neighborhood of v are

transformed through the function e on the basis of the timestep distance δuv between
u and v. Finally, if τuv = t, the modified node states are further transformed through
the weight matrix Wℓ+1

t and scaled by 1/|N t
v |. The resulting values are summed and

passed through a ReLU activation function. The final node state hℓ+1
v is obtained by

summing this last value with the previous node state hℓ
v . This represents a residual

connection between consecutive layers in the GCN.

2


	Data Preprocessing
	Model
	Convolutional Graph Network


